II B.Tech - I Semester – Regular / Supplementary Examinations DECEMBER 2023

DIGITAL LOGIC DESIGN

(ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max.				
					Marks				
UNIT-I									
1	a)	Convert the $(101101.1101)_2$ number into	L2	CO1	7 M				
		Decimal, Hexadecimal and octal form.							
	b)	State and Prove De Morgan's Theorems	L2	CO1	7 M				
		using truth table.							
OR									
2	a)	Explain about any four binary codes.	L2	CO1	7 M				
	b)	The Hamming code 101101101 is received.	L2	CO1	7 M				
		Correct it if any errors are available. Where							
		4 parity bits are used.							
UNIT-II									
3	a)	Simplify the following Boolean function for	L3	CO2	7 M				
		minimal SOP form using K–Map method.							
		F (A, B, C, D) = $\sum m (0,1,2,3,5,7,8,9,11,14)$							

Max. Marks: 70

	b)	Find the dual and complement for the	L3	CO2	7 M			
	,	following function						
		F=ABC+A'B'C'+AB'C'+A'BC+AB'C						
OR								
4	a)	Convert F (X, Y, Z) = $X'Y + X'Z + YZ$ into	L2	CO2	6 M			
		canonical SOP form.						
	b)	Simplify the following Boolean equation	L3	CO2	8 M			
		using K-map.						
		$F(W,X,Y,Z) = \sum m(0,7,8,9,10,12) +$						
		$\sum d(2,5,13).$						
		Implement the simplified expression using						
		NAND Gates.						
		UNIT-III						
5	a)	Design 3 to 8 decoder using 2 to 4 decoders	L4	CO3	7 M			
		and OR gate.						
	b)	Design 16x1 Mux using 4x1 Multiplexers.	L4	CO3	7 M			
	-	OR						
6	a)	Design 4-bit Binary Adder/Subtractor	L4	CO3	8 M			
		circuit with neat sketches.						
	b)	Implement the function	L3	CO3	6 M			
		$F(A, B, C) = \sum m(1, 3, 5, 6) \text{ using } 2x1 \text{ Mux.}$						
	-	UNIT-IV						
7	Sur	nmarize the SR, JK, D & T flip-flops with its	L2	CO4	14 M			
	cha	racteristic and Excitation tables.						
	•	OR						
8	a)	Explain about SIPO shift Register with neat	L2	CO4	7 M			
		sketches.						
	b)	Outline about the steps in synchronous	L2	CO4	7 M			
		counters design.						

