II B.Tech - I Semester - Regular / Supplementary Examinations DECEMBER 2023

DIGITAL LOGIC DESIGN
 (ELECTRONICS \& COMMUNICATION ENGINEERING)

Duration: 3 hours

Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

BL - Blooms Level
CO - Course Outcome

			BL	CO	Max. Marks
UNIT-I					
1	a)	Convert the $(101101.1101)_{2}$ number into Decimal, Hexadecimal and octal form.	L2	CO1	7 M
	b)	State and Prove De Morgan's Theorems using truth table.	L2	CO1	7 M
OR					
2	a)	Explain about any four binary codes.	L2	CO1	7 M
	b)	The Hamming code 101101101 is received. Correct it if any errors are available. Where 4 parity bits are used.	L2	CO1	7 M
UNIT-II					
3	a)	Simplify the following Boolean function for minimal SOP form using K-Map method. $\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(0,1,2,3,5,7,8,9,11,14)$	L3	CO 2	7 M

	b)	Find the dual and complement for the following function $\mathrm{F}=\mathrm{ABC}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime}+\mathrm{A}^{\prime} \mathrm{BC}+\mathrm{AB}^{\prime} \mathrm{C}$	L3	CO 2	7 M
OR					
4	a)	Convert $\mathrm{F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\mathrm{X}^{\prime} \mathrm{Y}+\mathrm{X}^{\prime} \mathrm{Z}+\mathrm{YZ}$ into canonical SOP form.	L2	CO2	6 M
	b)	Simplify the following Boolean equation using K-map. $\begin{aligned} \mathrm{F}(\mathrm{~W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})= & \sum \mathrm{m}(0,7,8,9,10,12)+ \\ & \sum \mathrm{d}(2,5,13) . \end{aligned}$ Implement the simplified expression using NAND Gates.	L3	CO2	8 M
UNIT-III					
5	a)	Design 3 to 8 decoder using 2 to 4 decoders and OR gate.	L4	CO3	7 M
	b)	Design 16x1 Mux using 4x1 Multiplexers.	L4	CO3	7 M
OR					
6	a)	Design 4-bit Binary Adder/Subtractor circuit with neat sketches.	L4	CO3	8 M
	b)	Implement the function $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\sum \mathrm{m}(1,3,5,6)$ using 2 x 1 Mux.	L3	CO3	6 M
UNIT-IV					
7 Summarize the SR, JK, D \& T flip-flops with its characteristic and Excitation tables.			L2	CO4	14 M
OR					
8	a)	Explain about SIPO shift Register with neat sketches.	L2	CO4	7 M
	b)	Outline about the steps in synchronous counters design.	L2	CO4	7 M

UNIT-V							
9	a)	Explain about sequential circ	the ts with	alysis of clocked n Example.	L4	CO5	7 M
	b)	Design the sequential circ	follo using	ing synchronous Flip-Flops.	L2	CO5	7 M
OR							
10	PS NS, Z $\mathrm{X}=0$ $\mathrm{X}=1$ A $\mathrm{B}, 1$ $\mathrm{H}, 1$ B F, 1 $\mathrm{D}, 1$ C $\mathrm{D}, 0$ $\mathrm{E}, 1$ D $\mathrm{C}, 0$ $\mathrm{~F}, 1$ E $\mathrm{D}, 1$ $\mathrm{E}, 1$ F $\mathrm{C}, 1$ $\mathrm{E}, 1$ G $\mathrm{C}, 1$ $\mathrm{D}, 1$ H $\mathrm{C}, 0$ $\mathrm{~A}, 1$ For the above state table obtain the following i. Draw the corresponding state diagram ii. Tabulate the reduced state table iii. Draw the state diagram corresponding to the reduced state table.				L4	CO5	14 M

